Getting Started

Transform your data analysis workflow in minutes. From upload to insights, Excel Copilot makes data magic accessible to everyone.

Quick Start Guide

Get up and running with Excel Copilot in just 3 simple steps

📁 Upload Your Data

Drag and drop your CSV or Excel files directly into the upload zone. Excel Copilot supports multiple formats and automatically detects your data structure.

đŸ’Ŧ Ask Questions

Use natural language to explore your data. Ask things like "Show me sales trends" or "Create a chart of revenue by region" - no complex formulas needed!

📊 Get Insights

Receive instant AI-powered analysis, interactive charts, and actionable recommendations. Export results in multiple formats or generate code for automation.

Core Features

Powerful capabilities designed for modern data analysis

🧠

Smart Data Analysis

AI-powered insights that automatically detect patterns, trends, and anomalies in your data. Get comprehensive statistics and data quality assessments instantly.

Ask: "What are the key insights in my sales data?" Get: Automatic trend analysis, outlier detection, and business recommendations
đŸ’Ŧ

Natural Language Queries

Skip complex formulas and SQL syntax. Ask questions in plain English and get precise, data-driven answers with visualizations.

"Show me top 5 customers by revenue" "What's the correlation between age and spending?" "Create a monthly trend chart"
📈

Auto Chart Generation

Beautiful, interactive charts generated automatically based on your data and questions. Support for bar, line, pie, scatter plots, and more.

✓ Bar Charts - Category comparisons ✓ Line Charts - Trend analysis ✓ Pie Charts - Proportion views ✓ Scatter Plots - Correlation analysis
⚡

Code Generation

Generate Excel VBA macros, SQL queries, and formulas automatically. Perfect for automating repetitive tasks and advanced data manipulation.

Sub RemoveDuplicates() ActiveSheet.Range("A:Z").RemoveDuplicates _ Columns:=Array(1, 2), Header:=xlYes End Sub
🔄

Format Conversion

Seamlessly convert between Excel formulas, SQL queries, and VBA code. Perfect for cross-platform data operations and learning.

Excel: =VLOOKUP(A2, Table1, 2, FALSE) SQL: SELECT t2.value FROM table2 t2 WHERE t2.key = t1.key
💾

Multi-Format Export

Export your processed data, analysis, and visualizations in CSV, Excel, PDF, or JSON formats. Share insights effortlessly across teams.

đŸ“Ĩ CSV - Raw data export đŸ“Ĩ Excel - Formatted workbooks đŸ“Ĩ PDF - Professional reports đŸ“Ĩ JSON - Analytics export

Supported File Formats

Import your data from various sources seamlessly

📄

CSV Files

Comma-separated values with automatic delimiter detection, header recognition, and data type inference.

  • ✓ Automatic encoding detection
  • ✓ Custom delimiter support
  • ✓ Robust error handling
  • ✓ Large file optimization
📊

Excel Files

Full support for .xlsx and .xls formats with automatic worksheet selection and formula preservation.

  • ✓ Multiple worksheet support
  • ✓ Formula calculation
  • ✓ Formatted data preservation
  • ✓ Chart metadata extraction

Best Practices

Tips for getting the most out of Excel Copilot

đŸŽ¯

Data Preparation

Ensure your data is clean and well-structured for optimal AI analysis.

  • â€ĸ Use clear, descriptive column headers
  • â€ĸ Remove empty rows and columns
  • â€ĸ Ensure consistent data formats
  • â€ĸ Include units in column names when relevant
💡

Effective Queries

Frame your questions clearly to get the most accurate and helpful responses.

  • â€ĸ Be specific about what you want to analyze
  • â€ĸ Mention column names when relevant
  • â€ĸ Ask follow-up questions for deeper insights
  • â€ĸ Use comparative language for trends
⚡

Performance Tips

Optimize your workflow for faster processing and better results.

  • â€ĸ Start with smaller datasets for testing
  • â€ĸ Use the quick prompts for common tasks
  • â€ĸ Export intermediate results frequently
  • â€ĸ Leverage the format converter for code reuse

Real-World Examples

Discover how Excel Copilot transforms complex data analysis tasks into simple conversations. From sales analytics to financial modeling.

📈 Sales Performance Analysis
Business Intelligence

Analyze quarterly sales data to identify top performers, seasonal trends, and growth opportunities. Perfect for sales managers and business analysts.

📋 Sample Data Structure
Date,Region,Salesperson,Product,Revenue,Units_Sold 2024-01-15,North,John Smith,Widget A,15000,300 2024-01-16,South,Jane Doe,Widget B,12000,200 2024-01-17,East,Mike Wilson,Widget A,18000,360 2024-01-18,West,Sarah Lee,Widget C,9000,150
đŸ’Ŧ Natural Language Queries
â€ĸ "Show me top 5 salespeople by revenue" â€ĸ "Create a monthly trend chart of total sales" â€ĸ "Which region has the highest average deal size?" â€ĸ "Compare product performance across quarters" â€ĸ "Identify seasonal patterns in sales data"
📊 Generated Insights
✓ Revenue Analysis: $2.4M total sales ✓ Top Performer: John Smith ($450K) ✓ Best Region: East (35% of total revenue) ✓ Growth Trend: 15% QoQ increase ✓ Seasonality: Peak in Q4, dip in Q1
⚡ Generated VBA Code
Sub CreateSalesDashboard() Dim ws As Worksheet Set ws = ActiveSheet ' Create pivot table for sales summary ws.PivotTableWizard _ SourceType:=xlDatabase, _ SourceData:=ws.Range("A1").CurrentRegion ' Format and style the dashboard With ws.PivotTables(1) .PivotFields("Region").Orientation = xlRowField .PivotFields("Revenue").Orientation = xlDataField End With End Sub
💰 Financial Portfolio Analysis
Finance

Analyze investment portfolios, calculate risk metrics, and optimize asset allocation using advanced financial modeling techniques.

📋 Portfolio Data
Date,Stock,Price,Volume,Sector,Market_Cap 2024-01-01,AAPL,192.53,45234567,Technology,3000000000 2024-01-01,MSFT,384.52,23456789,Technology,2850000000 2024-01-01,JPM,168.45,15678901,Financial,480000000
đŸ’Ŧ Analysis Queries
â€ĸ "Calculate portfolio beta and alpha" â€ĸ "Show correlation matrix for my stocks" â€ĸ "What's the Sharpe ratio for each asset?" â€ĸ "Create a risk-return scatter plot" â€ĸ "Generate Monte Carlo simulation"
📊 Financial Metrics
Portfolio Beta: 1.23 Sharpe Ratio: 1.87 Max Drawdown: -12.4% Volatility: 18.6% Annual Return: 24.3%
đŸ—ƒī¸ SQL Query
SELECT Sector, AVG(Price) as avg_price, SUM(Volume) as total_volume, COUNT(*) as stock_count, STDDEV(Price) as price_volatility FROM portfolio_data WHERE Date >= '2024-01-01' GROUP BY Sector ORDER BY total_volume DESC;
đŸ‘Ĩ Customer Behavior Analytics
Marketing

Understand customer segments, analyze purchasing patterns, and predict customer lifetime value for targeted marketing campaigns.

📋 Customer Data
Customer_ID,Age,Gender,Location,Purchase_Amount,Purchase_Date,Category C001,28,F,New York,245.50,2024-01-15,Electronics C002,35,M,California,89.99,2024-01-16,Books C003,42,F,Texas,456.78,2024-01-17,Clothing
đŸ’Ŧ Marketing Questions
â€ĸ "Segment customers by purchasing behavior" â€ĸ "What's the average customer lifetime value?" â€ĸ "Which age group spends the most?" â€ĸ "Show purchase patterns by location" â€ĸ "Predict next purchase probability"
📊 Customer Segments
High Value (15%): $500+ avg spend Regular (60%): $100-500 avg spend Occasional (25%): <$100 avg spend Key Insights: â€ĸ 25-35 age group: Highest CLV â€ĸ Electronics: Most popular category â€ĸ California: Largest market
⚡ Customer Segmentation VBA
Sub SegmentCustomers() Dim lastRow As Long lastRow = Cells(Rows.Count, 1).End(xlUp).Row For i = 2 To lastRow If Cells(i, 4).Value >= 500 Then Cells(i, 8).Value = "High Value" ElseIf Cells(i, 4).Value >= 100 Then Cells(i, 8).Value = "Regular" Else Cells(i, 8).Value = "Occasional" End If Next i End Sub
🏭 Operations & Supply Chain
Operations

Optimize inventory levels, analyze production efficiency, and identify bottlenecks in your supply chain operations.

📋 Operations Data
Date,Product,Inventory_Level,Production_Rate,Demand,Lead_Time 2024-01-01,Widget A,1500,200,180,7 2024-01-02,Widget B,800,150,160,5 2024-01-03,Widget C,2200,300,280,10
đŸ’Ŧ Operations Queries
â€ĸ "Calculate optimal inventory levels" â€ĸ "Which products have the longest lead times?" â€ĸ "Show production vs demand trends" â€ĸ "Identify potential stockouts" â€ĸ "Calculate inventory turnover ratios"
📊 KPI Dashboard
Inventory Turnover: 8.2x annually Average Lead Time: 7.3 days Production Efficiency: 94.2% Stockout Risk: 2 products (Medium) Optimal Reorder Point: 450 units
đŸ—ƒī¸ Inventory Analysis SQL
SELECT Product, AVG(Inventory_Level) as avg_inventory, AVG(Demand) as avg_demand, AVG(Lead_Time) as avg_lead_time, CASE WHEN AVG(Inventory_Level) < AVG(Demand) * AVG(Lead_Time) THEN 'Reorder Now' ELSE 'Normal' END as status FROM operations_data GROUP BY Product;
👨‍đŸ’ŧ HR & People Analytics
Human Resources

Analyze employee performance, predict turnover, and optimize workforce planning with comprehensive HR analytics.

📋 Employee Data
Employee_ID,Department,Role,Salary,Performance_Score,Years_Experience,Training_Hours E001,Engineering,Senior,95000,4.2,5,40 E002,Sales,Manager,85000,4.5,8,25 E003,Marketing,Specialist,65000,3.8,3,35
đŸ’Ŧ HR Analytics Queries
â€ĸ "Analyze salary distribution by department" â€ĸ "Predict employee turnover risk" â€ĸ "Show correlation between training and performance" â€ĸ "Identify high-potential employees" â€ĸ "Calculate cost per hire by department"
📊 HR Insights
Turnover Rate: 12.5% (Industry: 15%) Avg Performance: 4.1/5.0 Training ROI: 23% performance boost High Performers: 18% of workforce Salary Equity Score: 85/100
⚡ Performance Analysis VBA
Sub AnalyzePerformance() Dim ws As Worksheet Set ws = ActiveSheet ' Calculate performance quartiles Dim perfRange As Range Set perfRange = ws.Range("E:E") For Each cell In perfRange If cell.Value >= 4.5 Then cell.Offset(0, 1).Value = "Top Performer" ElseIf cell.Value >= 3.5 Then cell.Offset(0, 1).Value = "Good Performer" Else cell.Offset(0, 1).Value = "Needs Improvement" End If Next cell End Sub

API Documentation

Integrate Excel Copilot's powerful data analysis capabilities into your applications with our comprehensive REST API.

Authentication

Secure your API requests with API key authentication

POST /api/v1/auth/token

Obtain an access token for API authentication. Include this token in the Authorization header for all subsequent requests.

Request Headers
Header Type Required Description
Content-Type string Required application/json
Request Body
{ "api_key": "your_api_key_here", "api_secret": "your_api_secret_here" }
Response
{ "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...", "token_type": "Bearer", "expires_in": 3600, "scope": "read write analyze" }

Data Upload & Processing

Upload and process your data files through the API

POST /api/v1/data/upload

Upload CSV or Excel files for processing and analysis. Returns a dataset ID for subsequent operations.

Request Headers
Header Type Required Description
Authorization string Required Bearer {access_token}
Content-Type string Required multipart/form-data
Form Parameters
Parameter Type Required Description
file file Required CSV or Excel file (.csv, .xlsx, .xls)
dataset_name string Optional Custom name for the dataset
auto_analyze boolean Optional Run automatic analysis (default: true)
Response
{ "dataset_id": "ds_1234567890", "filename": "sales_data.csv", "rows": 1500, "columns": 8, "size_bytes": 125000, "status": "processed", "created_at": "2024-01-15T10:30:00Z", "preview": [ { "Date": "2024-01-01", "Region": "North", "Sales": 15000 } ] }
GET /api/v1/data/{dataset_id}

Retrieve dataset information and metadata by dataset ID.

Path Parameters
Parameter Type Required Description
dataset_id string Required Unique dataset identifier
Query Parameters
Parameter Type Required Description
include_data boolean Optional Include raw data in response (default: false)
limit integer Optional Limit number of rows returned (max: 1000)

AI Analysis & Insights

Generate insights and answer questions about your data

POST /api/v1/analyze/query

Submit natural language queries to analyze your data and receive AI-generated insights.

Request Body
{ "dataset_id": "ds_1234567890", "query": "What are the top 5 regions by sales revenue?", "output_format": "structured", "include_visualization": true }
Parameters
Parameter Type Required Description
dataset_id string Required Dataset to analyze
query string Required Natural language question
output_format string Optional Response format: "structured" or "narrative"
include_visualization boolean Optional Generate chart data (default: false)
Response
{ "query_id": "q_987654321", "answer": "Based on your sales data, here are the top 5 regions by revenue...", "data": [ { "region": "North", "total_revenue": 125000, "percentage": 28.5 } ], "visualization": { "type": "bar_chart", "config": {...}, "data": {...} },
GET /api/v1/analyze/insights/{dataset_id}

Get automatically generated insights and statistics for a dataset.

Response
{ "dataset_id": "ds_1234567890", "insights": [ { "type": "trend", "title": "Revenue Growth Trend", "description": "Sales revenue shows consistent 15% monthly growth", "confidence": 0.89, "data_points": ["2024-01", "2024-02", "2024-03"] } ], "statistics": { "total_rows": 1500, "numeric_columns": 5, "completeness": 96.8, "duplicates": 12 }, "correlations": [ { "column1": "advertising_spend", "column2": "revenue", "correlation": 0.78, "significance": "high" } ] }

Code Generation

Generate VBA, SQL, and Excel formulas automatically

POST /api/v1/code/generate

Generate code in various formats based on natural language requirements.

Request Body
{ "dataset_id": "ds_1234567890", "requirement": "Create a VBA macro to remove duplicate rows", "output_language": "vba", "include_comments": true }
Parameters
Parameter Type Required Description
dataset_id string Optional Dataset context for code generation
requirement string Required Natural language description of requirement
output_language string Required "vba", "sql", "excel_formula", "python"
include_comments boolean Optional Add explanatory comments (default: true)
Response
{ "code_id": "c_456789123", "language": "vba", "code": "Sub RemoveDuplicates()\\n ' Remove duplicate rows from active sheet\\n ActiveSheet.Range(\"A:Z\").RemoveDuplicates Columns:=Array(1, 2), Header:=xlYes\\nEnd Sub", "explanation": "This VBA macro removes duplicate rows from the active worksheet...", "estimated_execution_time": "< 1 second", "dependencies": [] }
POST /api/v1/code/convert

Convert code between different formats (Excel formulas ↔ SQL ↔ VBA).

Request Body
{ "source_code": "=VLOOKUP(A2, Table1, 2, FALSE)", "source_language": "excel_formula", "target_language": "sql", "context": "Customer lookup table" }
Response
{ "converted_code": "SELECT t2.value FROM table1 t2 WHERE t2.key = ?", "explanation": "Converted Excel VLOOKUP to SQL JOIN query", "conversion_notes": [ "Replace '?' with actual lookup value", "Adjust table and column names as needed" ] }

Visualization & Charts

Create beautiful charts and visualizations from your data

POST /api/v1/charts/create

Generate chart configurations based on data and visualization requirements.

Request Body
{ "dataset_id": "ds_1234567890", "chart_type": "bar", "x_column": "region", "y_column": "revenue", "title": "Revenue by Region", "aggregation": "sum", "filters": { "date": { "start": "2024-01-01", "end": "2024-12-31" } } }
Parameters
Parameter Type Required Description
dataset_id string Required Source dataset for chart
chart_type string Required "bar", "line", "pie", "scatter", "heatmap"
x_column string Required Column for X-axis
y_column string Required Column for Y-axis
aggregation string Optional "sum", "avg", "count", "min", "max"
Response
{ "chart_id": "ch_789123456", "chart_config": { "type": "bar", "data": { "labels": ["North", "South", "East", "West"], "datasets": [{ "label": "Revenue", "data": [125000, 98000, 156000, 87000], "backgroundColor": ["#2563eb", "#8b5cf6", "#10b981", "#f59e0b"] }] }, "options": { "responsive": true, "plugins": { "title": { "display": true, "text": "Revenue by Region" } } } }, "export_urls": { "png": "https://api.excelcopilot.com/charts/ch_789123456.png", "svg": "https://api.excelcopilot.com/charts/ch_789123456.svg", "pdf": "https://api.excelcopilot.com/charts/ch_789123456.pdf" } }

Data Export

Export processed data and analysis results

GET /api/v1/export/{dataset_id}

Export dataset in various formats with optional filtering and processing.

Query Parameters
Parameter Type Required Description
format string Required "csv", "xlsx", "json", "pdf"
include_analysis boolean Optional Include insights and statistics
columns string[] Optional Specific columns to export
filters object Optional JSON filter conditions
Response (Success)
{ "export_id": "ex_321654987", "download_url": "https://api.excelcopilot.com/downloads/ex_321654987", "filename": "sales_data_processed.xlsx", "size_bytes": 145000, "expires_at": "2024-01-16T10:30:00Z", "format": "xlsx" }

SDK Examples

Code examples for popular programming languages

🐍

Python SDK

Complete example using the Python SDK for data upload and analysis.

import excelcopilot # Initialize client client = excelcopilot.Client(api_key="your_api_key") # Upload dataset dataset = client.upload_file("sales_data.csv") print(f"Dataset ID: {dataset.id}") # Analyze data result = client.analyze( dataset_id=dataset.id, query="What are the top performing regions?" ) print(result.answer) print(result.data) # Generate chart chart = client.create_chart( dataset_id=dataset.id, chart_type="bar", x_column="region", y_column="revenue" ) # Export results export_url = client.export( dataset_id=dataset.id, format="xlsx", include_analysis=True )
📜

JavaScript SDK

Node.js example for server-side integration and automation.

const ExcelCopilot = require('excel-copilot-sdk'); // Initialize client const client = new ExcelCopilot({ apiKey: process.env.EXCEL_COPILOT_API_KEY }); async function analyzeData() { try { // Upload file const dataset = await client.uploadFile('data.csv'); // Get insights const insights = await client.getInsights(dataset.id); console.log('Insights:', insights); // Generate code const code = await client.generateCode({ requirement: 'Create pivot table for sales by region', language: 'vba' }); console.log('Generated VBA:', code.code); } catch (error) { console.error('Error:', error.message); } } analyzeData();
⚡

cURL Examples

Direct HTTP requests for testing and integration.

# Upload file curl -X POST "https://api.excelcopilot.com/v1/data/upload" \ -H "Authorization: Bearer YOUR_TOKEN" \ -F "file=@sales_data.csv" \ -F "dataset_name=Sales Analysis" # Analyze data curl -X POST "https://api.excelcopilot.com/v1/analyze/query" \ -H "Authorization: Bearer YOUR_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "dataset_id": "ds_1234567890", "query": "Show monthly sales trends", "include_visualization": true }' # Generate VBA code curl -X POST "https://api.excelcopilot.com/v1/code/generate" \ -H "Authorization: Bearer YOUR_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "requirement": "Remove blank rows from sheet", "output_language": "vba" }'

Rate Limits & Error Handling

Important information about API limits and error responses

âąī¸

Rate Limits

API usage limits to ensure fair access and optimal performance.

Plan Requests/Hour Upload Size Datasets
Free 100 10 MB 5
Pro 1,000 100 MB 50
Enterprise 10,000 1 GB Unlimited
🚨

Error Responses

Standard error format and common error codes.

{ "error": { "code": "INVALID_DATASET", "message": "Dataset not found or access denied", "details": { "dataset_id": "ds_invalid", "suggestion": "Check dataset ID and permissions" }, "request_id": "req_123456789" } }
Common Error Codes
  • â€ĸ 401 UNAUTHORIZED - Invalid or expired token
  • â€ĸ 403 FORBIDDEN - Insufficient permissions
  • â€ĸ 429 RATE_LIMIT - Too many requests
  • â€ĸ 413 FILE_TOO_LARGE - Upload size exceeded
🔐

Security Best Practices

Keep your integrations secure and compliant.

  • â€ĸ Store API keys securely (environment variables)
  • â€ĸ Use HTTPS for all API requests
  • â€ĸ Implement proper error handling
  • â€ĸ Rotate API keys regularly
  • â€ĸ Validate file uploads before processing
  • â€ĸ Monitor API usage and logs
  • â€ĸ Follow data privacy regulations

API Support

Resources and support for API integration

📞

Developer Support

Get help with API integration and troubleshooting from our developer team.

đŸ’Ŧ

Community Forum

Join our developer community to share ideas, ask questions, and get peer support.

🔧

API Status

Check real-time API status, uptime statistics, and planned maintenance windows.